Internal
problem
ID
[2216]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.3.
Undetermined
Coefficients
for
Higher
Order
Equations.
Page
495
Problem
number
:
section
9.3,
problem
69
Date
solved
:
Tuesday, September 30, 2025 at 05:25:06 AM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(diff(y(x),x),x),x)-2*diff(diff(y(x),x),x)-5*diff(y(x),x)+6*y(x) = 2*exp(x)*(1-6*x); ic:=[y(0) = 2, D(y)(0) = 7, (D@@2)(y)(0) = 9]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,3}]-2*D[y[x],{x,2}]-5*D[y[x],x]+6*y[x]==2*Exp[x]*(1-6*x); ic={y[0]==2,Derivative[1][y][0] ==7,Derivative[2][y][0] ==9}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((12*x - 2)*exp(x) + 6*y(x) - 5*Derivative(y(x), x) - 2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {y(0): 2, Subs(Derivative(y(x), x), x, 0): 7, Subs(Derivative(y(x), (x, 2)), x, 0): 9} dsolve(ode,func=y(x),ics=ics)