Internal
problem
ID
[2220]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.3.
Undetermined
Coefficients
for
Higher
Order
Equations.
Page
495
Problem
number
:
section
9.3,
problem
73
Date
solved
:
Tuesday, September 30, 2025 at 05:25:08 AM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(diff(y(x),x),x),x)+2*diff(diff(y(x),x),x)+diff(y(x),x)+2*y(x) = 30*cos(x)-10*sin(x); ic:=[y(0) = 3, D(y)(0) = -4, (D@@2)(y)(0) = 16]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=0*D[y[x],{x,4}]+1*D[y[x],{x,3}]+2*D[y[x],{x,2}]+1*D[y[x],x]+2*y[x]==30*Cos[x]-10*Sin[x]; ic={y[0]==3,Derivative[1][y][0] ==-4,Derivative[2][y][0] ==16}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*y(x) + 10*sin(x) - 30*cos(x) + Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {y(0): 3, Subs(Derivative(y(x), x), x, 0): -4, Subs(Derivative(y(x), (x, 2)), x, 0): 16} dsolve(ode,func=y(x),ics=ics)