Internal
problem
ID
[2221]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.3.
Undetermined
Coefficients
for
Higher
Order
Equations.
Page
495
Problem
number
:
section
9.3,
problem
74
Date
solved
:
Tuesday, September 30, 2025 at 05:25:09 AM
CAS
classification
:
[[_high_order, _missing_y]]
With initial conditions
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-3*diff(diff(diff(y(x),x),x),x)+5*diff(diff(y(x),x),x)-2*diff(y(x),x) = -2*exp(x)*(cos(x)-sin(x)); ic:=[y(0) = 2, D(y)(0) = 0, (D@@2)(y)(0) = -1, (D@@3)(y)(0) = -5]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=1*D[y[x],{x,4}]-3*D[y[x],{x,3}]+5*D[y[x],{x,2}]-2*D[y[x],x]+0*y[x]==-2*Exp[x]*(Cos[x]-Sin[x]); ic={y[0]==2,Derivative[1][y][0] ==0,Derivative[2][y][0] ==-1,Derivative[3][y][0]==-5}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-2*sin(x) + 2*cos(x))*exp(x) - 2*Derivative(y(x), x) + 5*Derivative(y(x), (x, 2)) - 3*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {y(0): 2, Subs(Derivative(y(x), x), x, 0): 0, Subs(Derivative(y(x), (x, 2)), x, 0): -1, Subs(Derivative(y(x), (x, 3)), x, 0): -5} dsolve(ode,func=y(x),ics=ics)
Timed Out