Internal
problem
ID
[2227]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.4.
Variation
of
Parameters
for
Higher
Order
Equations.
Page
503
Problem
number
:
section
9.4,
problem
18
Date
solved
:
Tuesday, September 30, 2025 at 05:25:13 AM
CAS
classification
:
[[_high_order, _exact, _linear, _nonhomogeneous]]
ode:=x^4*diff(diff(diff(diff(y(x),x),x),x),x)+6*x^3*diff(diff(diff(y(x),x),x),x)+2*x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+4*y(x) = 12*x^2; dsolve(ode,y(x), singsol=all);
ode=x^4*D[y[x],{x,4}]+6*x^3*D[y[x],{x,3}]+2*x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+4*y[x]==12*x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*Derivative(y(x), (x, 4)) + 6*x**3*Derivative(y(x), (x, 3)) + 2*x**2*Derivative(y(x), (x, 2)) - 12*x**2 - 4*x*Derivative(y(x), x) + 4*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)