Internal
problem
ID
[2228]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.4.
Variation
of
Parameters
for
Higher
Order
Equations.
Page
503
Problem
number
:
section
9.4,
problem
22
Date
solved
:
Tuesday, September 30, 2025 at 05:25:14 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
With initial conditions
ode:=x^3*diff(diff(diff(y(x),x),x),x)-2*x^2*diff(diff(y(x),x),x)+3*x*diff(y(x),x)-3*y(x) = 4*x; ic:=[y(1) = 4, D(y)(1) = 4, (D@@2)(y)(1) = 2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]-2*x^2*D[y[x],{x,2}]+3*x*D[y[x],x]-3*y[x]==4*x; ic={y[1]==4,Derivative[1][y][1]==4,Derivative[2][y][1]==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) - 2*x**2*Derivative(y(x), (x, 2)) + 3*x*Derivative(y(x), x) - 4*x - 3*y(x),0) ics = {y(1): 4, Subs(Derivative(y(x), x), x, 1): 4, Subs(Derivative(y(x), (x, 2)), x, 1): 2} dsolve(ode,func=y(x),ics=ics)