Internal
problem
ID
[2230]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.4.
Variation
of
Parameters
for
Higher
Order
Equations.
Page
503
Problem
number
:
section
9.4,
problem
25
Date
solved
:
Tuesday, September 30, 2025 at 05:25:15 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
With initial conditions
ode:=x^3*diff(diff(diff(y(x),x),x),x)-6*x^2*diff(diff(y(x),x),x)+16*x*diff(y(x),x)-16*y(x) = 9*x^4; ic:=[y(1) = 2, D(y)(1) = 1, (D@@2)(y)(1) = 5]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]-6*x^2*D[y[x],{x,2}]+16*x*D[y[x],x]-16*y[x]==9*x^4; ic={y[1]==2,Derivative[1][y][1]==1,Derivative[2][y][1]==5}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-9*x**4 + x**3*Derivative(y(x), (x, 3)) - 6*x**2*Derivative(y(x), (x, 2)) + 16*x*Derivative(y(x), x) - 16*y(x),0) ics = {y(1): 2, Subs(Derivative(y(x), x), x, 1): 1, Subs(Derivative(y(x), (x, 2)), x, 1): 5} dsolve(ode,func=y(x),ics=ics)