Internal
problem
ID
[2231]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.4.
Variation
of
Parameters
for
Higher
Order
Equations.
Page
503
Problem
number
:
section
9.4,
problem
27
Date
solved
:
Tuesday, September 30, 2025 at 05:25:16 AM
CAS
classification
:
[[_3rd_order, _exact, _linear, _nonhomogeneous]]
With initial conditions
ode:=x^3*diff(diff(diff(y(x),x),x),x)+x^2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = x*(1+x); ic:=[y(-1) = -6, D(y)(-1) = 43/6, (D@@2)(y)(-1) = -5/2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]+x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==x*(x+1); ic={y[-1]==-6,Derivative[1][y][-1]==43/6,Derivative[2][y][-1]==-5/2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) + x**2*Derivative(y(x), (x, 2)) - x*(x + 1) - 2*x*Derivative(y(x), x) + 2*y(x),0) ics = {y(-1): -6, Subs(Derivative(y(x), x), x, -1): 43/6, Subs(Derivative(y(x), (x, 2)), x, -1): -5/2} dsolve(ode,func=y(x),ics=ics)