4.1.11 Problems 1001 to 1100

Table 4.21: First order ode

#

ODE

Mathematica

Maple

Sympy

2963

\[ {} y x^{\prime }+\left (y +1\right ) x = {\mathrm e}^{y} \]

2964

\[ {} y+\left (2 x -3 y\right ) y^{\prime } = 0 \]

2965

\[ {} x y^{\prime }-2 x^{4}-2 y = 0 \]

2966

\[ {} 1 = \left (x +{\mathrm e}^{y}\right ) y^{\prime } \]

2967

\[ {} y^{2} x^{\prime }+\left (y^{2}+2 y \right ) x = 1 \]

2968

\[ {} x y^{\prime } = 5 y+x +1 \]

2969

\[ {} x^{2} y^{\prime }+y-2 x y-2 x^{2} = 0 \]

2970

\[ {} 2 y+y^{\prime } \left (1+x \right ) = \frac {{\mathrm e}^{x}}{1+x} \]

2971

\[ {} \cos \left (y\right )^{2}+\left (x -\tan \left (y\right )\right ) y^{\prime } = 0 \]

2972

\[ {} 2 y = \left (y^{4}+x \right ) y^{\prime } \]

2973

\[ {} \cos \left (\theta \right ) r^{\prime } = 2+2 r \sin \left (\theta \right ) \]

2974

\[ {} \sin \left (\theta \right ) r^{\prime }+1+r \tan \left (\theta \right ) = \cos \left (\theta \right ) \]

2975

\[ {} y x^{\prime } = 2 y \,{\mathrm e}^{3 y}+x \left (3 y +2\right ) \]

2976

\[ {} y^{2}+1+\left (2 x y-y^{2}\right ) y^{\prime } = 0 \]

2977

\[ {} y^{\prime }+y \cot \left (x \right )-\sec \left (x \right ) = 0 \]

2978

\[ {} y+y^{3}+4 \left (x y^{2}-1\right ) y^{\prime } = 0 \]

2979

\[ {} 2 y-x y-3+x y^{\prime } = 0 \]

2980

\[ {} y+2 \left (x -2 y^{2}\right ) y^{\prime } = 0 \]

2981

\[ {} \left (x^{2}-1\right ) y^{\prime }+\left (x^{2}-1\right )^{2}+4 y = 0 \]

2982

\[ {} 3 y^{2} y^{\prime }-x y^{3} = {\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \]

2983

\[ {} y^{3} y^{\prime }+x y^{4} = x \,{\mathrm e}^{-x^{2}} \]

2984

\[ {} \cosh \left (y\right ) y^{\prime }+\sinh \left (y\right )-{\mathrm e}^{-x} = 0 \]

2985

\[ {} \sin \left (\theta \right ) \theta ^{\prime }+\cos \left (\theta \right )-t \,{\mathrm e}^{-t} = 0 \]

2986

\[ {} y y^{\prime } x = x^{2}-y^{2} \]

2987

\[ {} y^{\prime }-x y = \sqrt {y}\, x \,{\mathrm e}^{x^{2}} \]

2988

\[ {} t x^{\prime }+x \left (1-x^{2} t^{4}\right ) = 0 \]

2989

\[ {} x^{2} y^{\prime }+y^{2} = x y \]

2990

\[ {} \csc \left (y\right ) \cot \left (y\right ) y^{\prime } = \csc \left (y\right )+{\mathrm e}^{x} \]

2991

\[ {} y^{\prime }-x y = \frac {x}{y} \]

2992

\[ {} x y^{\prime }+y = y^{2} x^{2} \cos \left (x \right ) \]

2993

\[ {} r^{\prime }+\left (r-\frac {1}{r}\right ) \theta = 0 \]

2994

\[ {} x y^{\prime }+2 y = 3 x^{3} y^{{4}/{3}} \]

2995

\[ {} 3 y^{\prime }+\frac {2 y}{1+x} = \frac {x}{y^{2}} \]

2996

\[ {} \cos \left (y\right ) y^{\prime }+\left (\sin \left (y\right )-1\right ) \cos \left (x \right ) = 0 \]

2997

\[ {} \left (x \tan \left (y\right )^{2}+x \right ) y^{\prime } = 2 x^{2}+\tan \left (y\right ) \]

2998

\[ {} y^{\prime }+y \cos \left (x \right ) = y^{3} \sin \left (x \right ) \]

2999

\[ {} y+y^{\prime } = y^{2} {\mathrm e}^{-t} \]

3000

\[ {} y^{\prime } = x \left (1-{\mathrm e}^{2 y-x^{2}}\right ) \]

3001

\[ {} 2 y = \left (x^{2} y^{4}+x \right ) y^{\prime } \]

3002

\[ {} 1+x y \left (x y^{2}+1\right ) y^{\prime } = 0 \]

3003

\[ {} y^{\prime } \left (-x^{2}+1\right )+x y = x \left (-x^{2}+1\right ) \sqrt {y} \]

3004

\[ {} \left (1-x \right ) y^{\prime }-1-y = 0 \]

3005

\[ {} y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0 \]

3006

\[ {} 2 x +y-\left (x -2 y\right ) y^{\prime } = 0 \]

3007

\[ {} x \ln \left (x \right ) y^{\prime }+y-x = 0 \]

3008

\[ {} x -2 y+1+\left (y-2\right ) y^{\prime } = 0 \]

3009

\[ {} 2 x y-2 x y^{3}+x^{3}+\left (x^{2}+y^{2}-3 x^{2} y^{2}\right ) y^{\prime } = 0 \]

3010

\[ {} 2 \,{\mathrm e}^{x}-t^{2}+t \,{\mathrm e}^{x} x^{\prime } = 0 \]

3011

\[ {} 6+2 y = y y^{\prime } x \]

3012

\[ {} x -3 y = \left (3 y-x +2\right ) y^{\prime } \]

3013

\[ {} \sin \left (x \right ) y-2 \cos \left (y\right )+\tan \left (x \right )-\left (\cos \left (x \right )-2 x \sin \left (y\right )+\sin \left (y\right )\right ) y^{\prime } = 0 \]

3014

\[ {} x^{2} y-\left (y^{3}+x^{3}\right ) y^{\prime } = 0 \]

3015

\[ {} y-x y^{\prime } = 2 y^{\prime }+2 y^{2} \]

3016

\[ {} \tan \left (y\right ) = \left (3 x +4\right ) y^{\prime } \]

3017

\[ {} y^{\prime }+y \ln \left (y\right ) \tan \left (x \right ) = 2 y \]

3018

\[ {} 2 x y+y^{4}+\left (x y^{3}-2 x^{2}\right ) y^{\prime } = 0 \]

3019

\[ {} y+\left (3 x -2 y\right ) y^{\prime } = 0 \]

3020

\[ {} r^{\prime } = r \cot \left (\theta \right ) \]

3021

\[ {} \left (3 x +4 y\right ) y^{\prime }+y+2 x = 0 \]

3022

\[ {} 2 x^{3}-y^{3}-3 x +3 x y^{2} y^{\prime } = 0 \]

3023

\[ {} x y^{\prime }-y-\sqrt {x^{2}+y^{2}} = 0 \]

3024

\[ {} y^{\prime } = \cos \left (y\right ) \cos \left (x \right )^{2} \]

3025

\[ {} x +y+\left (2 x +3 y-1\right ) y^{\prime } = 0 \]

3026

\[ {} 1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

3027

\[ {} y^{\prime }+x +y \cot \left (x \right ) = 0 \]

3028

\[ {} 3 x -6 = y y^{\prime } x \]

3029

\[ {} x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

3030

\[ {} 2 x y^{\prime }-y+\frac {x^{2}}{y^{2}} = 0 \]

3031

\[ {} x y^{\prime }+y \left (1+y^{2}\right ) = 0 \]

3032

\[ {} y \sqrt {x^{2}+y^{2}}+x y = x^{2} y^{\prime } \]

3033

\[ {} 3 \,{\mathrm e}^{x} \tan \left (y\right ) = \left (-{\mathrm e}^{x}+1\right ) \sec \left (y\right )^{2} y^{\prime } \]

3034

\[ {} \sec \left (y\right )^{2} y^{\prime } = \tan \left (y\right )+2 x \,{\mathrm e}^{x} \]

3035

\[ {} 2 x \tan \left (y\right )+3 y^{2}+x^{2}+\left (x^{2} \sec \left (y\right )^{2}+6 x y-y^{2}\right ) y^{\prime } = 0 \]

3036

\[ {} y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime } = 0 \]

3037

\[ {} y \left (3 x^{2}+y\right )-x \left (-y+x^{2}\right ) y^{\prime } = 0 \]

3038

\[ {} x +\left (2 x +3 y+2\right ) y^{\prime } = 0 \]

3039

\[ {} x y^{\prime }-5 y-x \sqrt {y} = 0 \]

3040

\[ {} x \sqrt {1-y}-y^{\prime } \sqrt {-x^{2}+1} = 0 \]

3041

\[ {} x y-y^{2}-x^{2} y^{\prime } = 0 \]

3042

\[ {} x \,{\mathrm e}^{-y^{2}}+y y^{\prime } = 0 \]

3043

\[ {} \frac {2 y^{3}-2 x^{2} y^{3}-x +x y^{2} \ln \left (y\right )}{x y^{2}}+\frac {\left (2 y^{3} \ln \left (x \right )-x^{2} y^{3}+2 x +x y^{2}\right ) y^{\prime }}{y^{3}} = 0 \]

3044

\[ {} x y^{\prime }-2 y-2 y^{3} x^{4} = 0 \]

3045

\[ {} \left (-2 x^{2}-3 x y\right ) y^{\prime }+y^{2} = 0 \]

3046

\[ {} x y^{\prime } = x^{4}+4 y \]

3047

\[ {} x y^{\prime }+y = x^{3} y^{6} \]

3048

\[ {} x^{\prime } = x+x^{2} {\mathrm e}^{\theta } \]

3049

\[ {} x^{2}+y^{2} = 2 y y^{\prime } x \]

3050

\[ {} 3 x y+\left (3 x^{2}+y^{2}\right ) y^{\prime } = 0 \]

3051

\[ {} 2 y+y^{\prime } = 3 \,{\mathrm e}^{2 x} \]

3052

\[ {} 4 x y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

3053

\[ {} x -2 y+3 = \left (x -2 y+1\right ) y^{\prime } \]

3054

\[ {} y^{2}+\left (x^{3}-2 x y\right ) y^{\prime } = 0 \]

3055

\[ {} 2 x y-2 y+1+x \left (x -1\right ) y^{\prime } = 0 \]

3056

\[ {} y^{3}+2 x^{2} y+\left (-3 x^{3}-2 x y^{2}\right ) y^{\prime } = 0 \]

3057

\[ {} 2 \left (x^{2}+1\right ) y^{\prime } = \left (2 y^{2}-1\right ) x y \]

3058

\[ {} y^{\prime }-y = 0 \]

3169

\[ {} y^{\prime }+P \left (x \right ) y = Q \left (x \right ) \]

3285

\[ {} 4 y^{2} = x^{2} {y^{\prime }}^{2} \]

3286

\[ {} x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

3287

\[ {} 1+\left (2 y-x^{2}\right ) {y^{\prime }}^{2}-2 y {y^{\prime }}^{2} x^{2} = 0 \]