11.8.2 problem 1.2-3 (b)

Internal problem ID [3454]
Book : Ordinary Differential Equations, Robert H. Martin, 1983
Section : Problem 1.2-3, page 12
Problem number : 1.2-3 (b)
Date solved : Tuesday, September 30, 2025 at 06:38:49 AM
CAS classification : [_linear]

\begin{align*} t \ln \left (t \right ) y^{\prime }&=t \ln \left (t \right )-y \end{align*}

With initial conditions

\begin{align*} y \left ({\mathrm e}\right )&=1 \\ \end{align*}
Maple. Time used: 0.020 (sec). Leaf size: 18
ode:=t*ln(t)*diff(y(t),t) = t*ln(t)-y(t); 
ic:=[y(exp(1)) = 1]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = \frac {t \ln \left (t \right )-t +1}{\ln \left (t \right )} \]
Mathematica. Time used: 0.023 (sec). Leaf size: 19
ode=t*Log[t]*D[y[t],t]==t*Log[t]-y[t]; 
ic=y[Exp[1]]==1; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {-t+t \log (t)+1}{\log (t)} \end{align*}
Sympy. Time used: 0.170 (sec). Leaf size: 14
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t*log(t)*Derivative(y(t), t) - t*log(t) + y(t),0) 
ics = {y(E): 1} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = t - \frac {t}{\log {\left (t \right )}} + \frac {1}{\log {\left (t \right )}} \]