Internal
problem
ID
[3454]
Book
:
Ordinary
Differential
Equations,
Robert
H.
Martin,
1983
Section
:
Problem
1.2-3,
page
12
Problem
number
:
1.2-3
(b)
Date
solved
:
Tuesday, September 30, 2025 at 06:38:49 AM
CAS
classification
:
[_linear]
With initial conditions
ode:=t*ln(t)*diff(y(t),t) = t*ln(t)-y(t); ic:=[y(exp(1)) = 1]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=t*Log[t]*D[y[t],t]==t*Log[t]-y[t]; ic=y[Exp[1]]==1; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t*log(t)*Derivative(y(t), t) - t*log(t) + y(t),0) ics = {y(E): 1} dsolve(ode,func=y(t),ics=ics)