Internal
problem
ID
[3455]
Book
:
Ordinary
Differential
Equations,
Robert
H.
Martin,
1983
Section
:
Problem
1.2-3,
page
12
Problem
number
:
1.2-3
(c)
Date
solved
:
Tuesday, September 30, 2025 at 06:38:51 AM
CAS
classification
:
[_linear]
With initial conditions
ode:=diff(y(t),t) = 2/(-t^2+1)*y(t)+3; ic:=[y(1/2) = 1]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=D[y[t],t]==2/(1-t^2)*y[t]+3; ic=y[1/2]==1; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(Derivative(y(t), t) - 3 - 2*y(t)/(1 - t**2),0) ics = {y(1/2): 1} dsolve(ode,func=y(t),ics=ics)