Internal
problem
ID
[4023]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
11,
Series
Solutions
to
Linear
Differential
Equations.
Exercises
for
11.4.
page
758
Problem
number
:
19
Date
solved
:
Tuesday, September 30, 2025 at 07:00:32 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=3*x^2*diff(diff(y(x),x),x)+x*(3*x^2+1)*diff(y(x),x)-2*x*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=3*x^2*D[y[x],{x,2}]+x*(1+3*x^2)*D[y[x],x]-2*x*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x**2*Derivative(y(x), (x, 2)) + x*(3*x**2 + 1)*Derivative(y(x), x) - 2*x*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)