Internal
problem
ID
[4024]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
11,
Series
Solutions
to
Linear
Differential
Equations.
Exercises
for
11.4.
page
758
Problem
number
:
20
Date
solved
:
Tuesday, September 30, 2025 at 07:00:32 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=4*x^2*diff(diff(y(x),x),x)-4*x^2*diff(y(x),x)+(2*x+1)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=4*x^2*D[y[x],{x,2}]-4*x^2*D[y[x],x]+(1+2*x)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x**2*Derivative(y(x), x) + 4*x**2*Derivative(y(x), (x, 2)) + (2*x + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)