23.1.547 problem 537

Internal problem ID [5154]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 537
Date solved : Tuesday, September 30, 2025 at 11:46:36 AM
CAS classification : [[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x \left (x^{3}+y\right ) y^{\prime }&=\left (x^{3}-y\right ) y \end{align*}
Maple. Time used: 0.175 (sec). Leaf size: 41
ode:=x*(x^3+y(x))*diff(y(x),x) = (x^3-y(x))*y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {c_1 \left (c_1 -\sqrt {x^{4}+c_1^{2}}\right )}{x} \\ y &= \frac {c_1 \left (c_1 +\sqrt {x^{4}+c_1^{2}}\right )}{x} \\ \end{align*}
Mathematica. Time used: 0.593 (sec). Leaf size: 73
ode=x*(x^3+y[x])*D[y[x],x]==(x^3-y[x])*y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x^4}{-x+\frac {\sqrt {1+c_1 x^4}}{\sqrt {\frac {1}{x^2}}}}\\ y(x)&\to -\frac {x^4}{x+\frac {\sqrt {1+c_1 x^4}}{\sqrt {\frac {1}{x^2}}}}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 5.018 (sec). Leaf size: 48
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x**3 + y(x))*Derivative(y(x), x) - (x**3 - y(x))*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {\left (1 - \sqrt {2 x^{4} e^{C_{1}} + 1}\right ) e^{- C_{1}}}{2 x}, \ y{\left (x \right )} = \frac {\left (\sqrt {2 x^{4} e^{C_{1}} + 1} + 1\right ) e^{- C_{1}}}{2 x}\right ] \]