23.1.548 problem 538

Internal problem ID [5155]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 538
Date solved : Tuesday, September 30, 2025 at 11:46:45 AM
CAS classification : [[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x \left (2 x^{3}+y\right ) y^{\prime }&=\left (2 x^{3}-y\right ) y \end{align*}
Maple. Time used: 0.183 (sec). Leaf size: 47
ode:=x*(2*x^3+y(x))*diff(y(x),x) = (2*x^3-y(x))*y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {c_1 \left (-c_1 +\sqrt {4 x^{4}+c_1^{2}}\right )}{2 x} \\ y &= \frac {c_1 \left (c_1 +\sqrt {4 x^{4}+c_1^{2}}\right )}{2 x} \\ \end{align*}
Mathematica. Time used: 0.571 (sec). Leaf size: 76
ode=x*(2*x^3+y[x])*D[y[x],x]==(2*x^3-y[x])*y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {2 x^4}{-x+\frac {\sqrt {1+4 c_1 x^4}}{\sqrt {\frac {1}{x^2}}}}\\ y(x)&\to -\frac {2 x^4}{x+\frac {\sqrt {1+4 c_1 x^4}}{\sqrt {\frac {1}{x^2}}}}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 5.644 (sec). Leaf size: 48
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(2*x**3 + y(x))*Derivative(y(x), x) - (2*x**3 - y(x))*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {\left (1 - \sqrt {4 x^{4} e^{C_{1}} + 1}\right ) e^{- C_{1}}}{2 x}, \ y{\left (x \right )} = \frac {\left (\sqrt {4 x^{4} e^{C_{1}} + 1} + 1\right ) e^{- C_{1}}}{2 x}\right ] \]