| # | ODE | Mathematica | Maple | Sympy |
| \[
{} 5 x y^{\prime \prime }+\left (30+3 x \right ) y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }-\left (x +4\right ) y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y^{\prime \prime }-\left (6+2 x \right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+\left (1-x \right ) x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (2 x^{2}-3 x \right ) y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {9}{4}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x \left (1+x \right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 4 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2} y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -2\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x -1\right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime } \left (1+x \right ) = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -1\right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 \left (x -1\right ) y^{\prime } = 3 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 4 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y^{\prime } = y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime }+y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime } = 2 y
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+2\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+6 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime \prime }-6 x y^{\prime }+12 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+3\right ) y^{\prime \prime }-7 x y^{\prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+2\right ) y^{\prime \prime }-x y^{\prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime \prime }+8 x y^{\prime }+12 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime }+x y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y^{\prime \prime }-2 x y^{\prime }+10 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 y+2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+2 x \right ) y^{\prime \prime }-6 \left (x -1\right ) y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (4 x^{2}+16 x +17\right ) y^{\prime \prime } = 8 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\left (1+x \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }+2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{3}+1\right ) y^{\prime \prime }+x^{4} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}+1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y \,{\mathrm e}^{-x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } \cos \left (x \right )+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime } \sin \left (x \right )+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 x y^{\prime }+2 \alpha y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+k^{2} x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-x \right ) y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+2\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 y-4 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+4\right ) y^{\prime \prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+3\right ) y^{\prime \prime }-3 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }+x y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+2\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 x y^{\prime }+\lambda y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+2\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+4\right ) y^{\prime \prime }+x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+y^{\prime } \left (1+x \right )+3 y \ln \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x^{2} y^{\prime }+\sin \left (x \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+6 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+6 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-2 x -3\right ) y^{\prime \prime }+x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-2 x -3\right ) y^{\prime \prime }+x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-2 x -3\right ) y^{\prime \prime }+x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{3}+1\right ) y^{\prime \prime }+4 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|