23.3.219 problem 221

Internal problem ID [5933]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 221
Date solved : Tuesday, September 30, 2025 at 02:06:26 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 18
ode:=x^3*y(x)-(2*x^2+1)*diff(y(x),x)+x*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\frac {x^{2}}{2}} \left (c_2 \,x^{2}+c_1 \right ) \]
Mathematica. Time used: 0.012 (sec). Leaf size: 29
ode=x^3*y[x] - (1 + 2*x^2)*D[y[x],x] + x*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} e^{\frac {x^2}{2}} \left (c_2 x^2+2 c_1\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*y(x) + x*Derivative(y(x), (x, 2)) - (2*x**2 + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False