23.3.220 problem 222

Internal problem ID [5934]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 222
Date solved : Tuesday, September 30, 2025 at 02:06:27 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} -8 x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 21
ode:=-8*x^3*y(x)-(2*x^2+1)*diff(y(x),x)+x*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{2 x^{2}}+c_2 \,{\mathrm e}^{-x^{2}} \]
Mathematica. Time used: 0.017 (sec). Leaf size: 26
ode=-8*x^3*y[x] - (1 + 2*x^2)*D[y[x],x] + x*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-x^2} \left (c_1 e^{3 x^2}+c_2\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-8*x**3*y(x) + x*Derivative(y(x), (x, 2)) - (2*x**2 + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False