23.3.488 problem 494

Internal problem ID [6202]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 494
Date solved : Friday, October 03, 2025 at 01:56:54 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \operatorname {a2} y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{3} y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.043 (sec). Leaf size: 146
ode:=a2*y(x)+x*(b1*x+a1)*diff(y(x),x)+x^3*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{-\operatorname {b1}} \left (-x \operatorname {a2} c_2 \left (\operatorname {b1} \operatorname {a1} -\operatorname {a2} \right ) \left (\operatorname {a1} -\operatorname {a2} \right ) \operatorname {KummerU}\left (\frac {\left (\operatorname {b1} +1\right ) \operatorname {a1} -\operatorname {a2}}{\operatorname {a1}}, \operatorname {b1} , \frac {\operatorname {a1}}{x}\right )+\left (x \operatorname {a1} c_1 \left (\operatorname {b1} \operatorname {a1} -\operatorname {a2} \right ) \operatorname {KummerM}\left (\frac {\left (\operatorname {b1} +1\right ) \operatorname {a1} -\operatorname {a2}}{\operatorname {a1}}, \operatorname {b1} , \frac {\operatorname {a1}}{x}\right )-\left (\operatorname {a1} c_1 \operatorname {KummerM}\left (\frac {\operatorname {b1} \operatorname {a1} -\operatorname {a2}}{\operatorname {a1}}, \operatorname {b1} , \frac {\operatorname {a1}}{x}\right )-\operatorname {a2} c_2 \operatorname {KummerU}\left (\frac {\operatorname {b1} \operatorname {a1} -\operatorname {a2}}{\operatorname {a1}}, \operatorname {b1} , \frac {\operatorname {a1}}{x}\right )\right ) \left (\operatorname {b1} \operatorname {a1} x +\operatorname {a1}^{2}-2 \operatorname {a2} x \right )\right ) \operatorname {a1} \right )}{\operatorname {a1}^{2} \operatorname {a2}} \]
Mathematica. Time used: 0.157 (sec). Leaf size: 61
ode=a2*y[x] + x*(a1 + b1*x)*D[y[x],x] + x^3*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \operatorname {Hypergeometric1F1}\left (-\frac {\text {a2}}{\text {a1}},2-\text {b1},\frac {\text {a1}}{x}\right )-(-1)^{\text {b1}} c_2 \text {a1}^{\text {b1}-1} \left (\frac {1}{x}\right )^{\text {b1}-1} \operatorname {Hypergeometric1F1}\left (-\frac {\text {a2}}{\text {a1}}+\text {b1}-1,\text {b1},\frac {\text {a1}}{x}\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a1 = symbols("a1") 
a2 = symbols("a2") 
b1 = symbols("b1") 
y = Function("y") 
ode = Eq(a2*y(x) + x**3*Derivative(y(x), (x, 2)) + x*(a1 + b1*x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (-a2*y(x) - x**3*Derivative(y(x), (x, 2)))