23.3.489 problem 495

Internal problem ID [6203]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 495
Date solved : Friday, October 03, 2025 at 01:56:55 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{3} y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.140 (sec). Leaf size: 132
ode:=(b2*x+a2)*y(x)+x*(b1*x+a1)*diff(y(x),x)+x^3*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x^{-\frac {\operatorname {b1}}{2}+\frac {1}{2}-\frac {\sqrt {\operatorname {b1}^{2}-2 \operatorname {b1} -4 \operatorname {b2} +1}}{2}} \left (\operatorname {KummerU}\left (\frac {\sqrt {\operatorname {b1}^{2}-2 \operatorname {b1} -4 \operatorname {b2} +1}\, \operatorname {a1} +\left (-1+\operatorname {b1} \right ) \operatorname {a1} -2 \operatorname {a2}}{2 \operatorname {a1}}, 1+\sqrt {\operatorname {b1}^{2}-2 \operatorname {b1} -4 \operatorname {b2} +1}, \frac {\operatorname {a1}}{x}\right ) c_2 +\operatorname {KummerM}\left (\frac {\sqrt {\operatorname {b1}^{2}-2 \operatorname {b1} -4 \operatorname {b2} +1}\, \operatorname {a1} +\left (-1+\operatorname {b1} \right ) \operatorname {a1} -2 \operatorname {a2}}{2 \operatorname {a1}}, 1+\sqrt {\operatorname {b1}^{2}-2 \operatorname {b1} -4 \operatorname {b2} +1}, \frac {\operatorname {a1}}{x}\right ) c_1 \right ) \]
Mathematica. Time used: 0.199 (sec). Leaf size: 255
ode=(a2 + b2*x)*y[x] + x*(a1 + b1*x)*D[y[x],x] + x^3*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -i^{-\sqrt {\text {b1}^2-2 \text {b1}-4 \text {b2}+1}+\text {b1}+1} \text {a1}^{\frac {1}{2} \left (-\sqrt {\text {b1}^2-2 \text {b1}-4 \text {b2}+1}+\text {b1}-1\right )} \left (\frac {1}{x}\right )^{\frac {1}{2} \left (-\sqrt {\text {b1}^2-2 \text {b1}-4 \text {b2}+1}+\text {b1}-1\right )} \left (c_2 i^{2 \sqrt {\text {b1}^2-2 \text {b1}-4 \text {b2}+1}} \text {a1}^{\sqrt {\text {b1}^2-2 \text {b1}-4 \text {b2}+1}} \left (\frac {1}{x}\right )^{\sqrt {\text {b1}^2-2 \text {b1}-4 \text {b2}+1}} \operatorname {Hypergeometric1F1}\left (\frac {1}{2} \left (-\frac {2 \text {a2}}{\text {a1}}+\text {b1}+\sqrt {\text {b1}^2-2 \text {b1}-4 \text {b2}+1}-1\right ),\sqrt {\text {b1}^2-2 \text {b1}-4 \text {b2}+1}+1,\frac {\text {a1}}{x}\right )+c_1 \operatorname {Hypergeometric1F1}\left (\frac {1}{2} \left (-\frac {2 \text {a2}}{\text {a1}}+\text {b1}-\sqrt {\text {b1}^2-2 \text {b1}-4 \text {b2}+1}-1\right ),1-\sqrt {\text {b1}^2-2 \text {b1}-4 \text {b2}+1},\frac {\text {a1}}{x}\right )\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a1 = symbols("a1") 
a2 = symbols("a2") 
b1 = symbols("b1") 
b2 = symbols("b2") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), (x, 2)) + x*(a1 + b1*x)*Derivative(y(x), x) + (a2 + b2*x)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (-a2*y(x) - b2*x*y(x) - x**3*Derivative(y(