| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }-25 y^{\prime }+50 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+2 y^{\prime \prime }+25 y^{\prime }+50 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}+27 y^{\prime \prime \prime \prime }+243 y^{\prime \prime }+729 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+18 y^{\prime \prime }-27 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = {\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{t}+{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 4 t \,{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime } = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = {\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{t}+{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime \prime \prime }+3 y^{\prime \prime }+t y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|