23.4.45 problem 45

Internal problem ID [6347]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 45
Date solved : Tuesday, September 30, 2025 at 02:52:14 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} b y+a y {y^{\prime }}^{2}+y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.010 (sec). Leaf size: 70
ode:=b*y(x)+a*y(x)*diff(y(x),x)^2+diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} a \int _{}^{y}\frac {1}{\sqrt {a \left ({\mathrm e}^{-\textit {\_a}^{2} a} c_1 a -b \right )}}d \textit {\_a} -x -c_2 &= 0 \\ -a \int _{}^{y}\frac {1}{\sqrt {a \left ({\mathrm e}^{-\textit {\_a}^{2} a} c_1 a -b \right )}}d \textit {\_a} -x -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 0.594 (sec). Leaf size: 290
ode=b*y[x] + a*y[x]*D[y[x],x]^2 + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\sqrt {a}}{\sqrt {e^{2 a c_1-a K[1]^2}-b}}dK[1]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt {a}}{\sqrt {e^{2 a c_1-a K[2]^2}-b}}dK[2]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\sqrt {a}}{\sqrt {e^{2 a (-c_1)-a K[1]^2}-b}}dK[1]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\sqrt {a}}{\sqrt {e^{2 a c_1-a K[1]^2}-b}}dK[1]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt {a}}{\sqrt {e^{2 a (-c_1)-a K[2]^2}-b}}dK[2]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt {a}}{\sqrt {e^{2 a c_1-a K[2]^2}-b}}dK[2]\&\right ][x+c_2] \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*y(x)*Derivative(y(x), x)**2 + b*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(-(b + Derivative(y(x), (x, 2))/y(x))/a) + Derivative(y(x),