23.4.46 problem 46

Internal problem ID [6348]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 46
Date solved : Tuesday, September 30, 2025 at 02:52:15 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} g \left (y\right )+f \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.064 (sec). Leaf size: 99
ode:=g(y(x))+f(y(x))*diff(y(x),x)^2+diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \int _{}^{y}\frac {{\mathrm e}^{2 \int f \left (\textit {\_f} \right )d \textit {\_f}}}{\sqrt {{\mathrm e}^{2 \int f \left (\textit {\_f} \right )d \textit {\_f}} \left (-2 \int {\mathrm e}^{2 \int f \left (\textit {\_f} \right )d \textit {\_f}} g \left (\textit {\_f} \right )d \textit {\_f} +c_1 \right )}}d \textit {\_f} -x -c_2 &= 0 \\ -\int _{}^{y}\frac {{\mathrm e}^{2 \int f \left (\textit {\_f} \right )d \textit {\_f}}}{\sqrt {{\mathrm e}^{2 \int f \left (\textit {\_f} \right )d \textit {\_f}} \left (-2 \int {\mathrm e}^{2 \int f \left (\textit {\_f} \right )d \textit {\_f}} g \left (\textit {\_f} \right )d \textit {\_f} +c_1 \right )}}d \textit {\_f} -x -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 0.252 (sec). Leaf size: 458
ode=g[y[x]] + f[y[x]]*D[y[x],x]^2 + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\exp \left (-\int _1^{K[3]}-f(K[1])dK[1]\right )}{\sqrt {c_1+2 \int _1^{K[3]}-\exp \left (-2 \int _1^{K[2]}-f(K[1])dK[1]\right ) g(K[2])dK[2]}}dK[3]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\exp \left (-\int _1^{K[4]}-f(K[1])dK[1]\right )}{\sqrt {c_1+2 \int _1^{K[4]}-\exp \left (-2 \int _1^{K[2]}-f(K[1])dK[1]\right ) g(K[2])dK[2]}}dK[4]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\exp \left (-\int _1^{K[3]}-f(K[1])dK[1]\right )}{\sqrt {2 \int _1^{K[3]}-\exp \left (-2 \int _1^{K[2]}-f(K[1])dK[1]\right ) g(K[2])dK[2]-c_1}}dK[3]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\exp \left (-\int _1^{K[3]}-f(K[1])dK[1]\right )}{\sqrt {c_1+2 \int _1^{K[3]}-\exp \left (-2 \int _1^{K[2]}-f(K[1])dK[1]\right ) g(K[2])dK[2]}}dK[3]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\exp \left (-\int _1^{K[4]}-f(K[1])dK[1]\right )}{\sqrt {2 \int _1^{K[4]}-\exp \left (-2 \int _1^{K[2]}-f(K[1])dK[1]\right ) g(K[2])dK[2]-c_1}}dK[4]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\exp \left (-\int _1^{K[4]}-f(K[1])dK[1]\right )}{\sqrt {c_1+2 \int _1^{K[4]}-\exp \left (-2 \int _1^{K[2]}-f(K[1])dK[1]\right ) g(K[2])dK[2]}}dK[4]\&\right ][x+c_2] \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(f(y(x))*Derivative(y(x), x)**2 + g(y(x)) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE sqrt(-(g(y(x)) + Derivative(y(x), (x, 2)))/f(y(x))) + Derivative