23.4.109 problem 109

Internal problem ID [6411]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 109
Date solved : Friday, October 03, 2025 at 02:05:40 AM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} x^{3} y^{\prime \prime }&=a \left (-y+x y^{\prime }\right )^{2} \end{align*}
Maple. Time used: 0.013 (sec). Leaf size: 23
ode:=x^3*diff(diff(y(x),x),x) = a*(-y(x)+x*diff(y(x),x))^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\ln \left (\frac {a \left (c_1 x -c_2 \right )}{x}\right ) x}{a} \]
Mathematica. Time used: 1.793 (sec). Leaf size: 25
ode=x^3*D[y[x],{x,2}] == a*(-y[x] + x*D[y[x],x])^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {x \log \left (-\frac {a (c_2 x+c_1)}{x}\right )}{a} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a*(x*Derivative(y(x), x) - y(x))**2 + x**3*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - y(x)/x - sqrt(a*x**5*Derivative(y(x), (x,