Internal
problem
ID
[6412]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
110
Date
solved
:
Tuesday, September 30, 2025 at 02:56:24 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=-6+x*y(x)*(12+3*x*y(x)-2*x^2*y(x)^2)+x^2*(9+2*x*y(x))*diff(y(x),x)+2*x^3*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=-6 + x*y[x]*(12 + 3*x*y[x] - 2*x^2*y[x]^2) + x^2*(9 + 2*x*y[x])*D[y[x],x] + 2*x^3*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**3*Derivative(y(x), (x, 2)) + x**2*(2*x*y(x) + 9)*Derivative(y(x), x) + x*(-2*x**2*y(x)**2 + 3*x*y(x) + 12)*y(x) - 6,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (2*x**3*y(x)**3 - 2*x**3*Derivative(y(x),