Internal
problem
ID
[6450]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
148
Date
solved
:
Friday, October 03, 2025 at 02:05:43 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]
ode:=y(x)*diff(diff(y(x),x),x) = g(x)*y(x)^2+f(x)*y(x)*diff(y(x),x)+diff(y(x),x)^2; dsolve(ode,y(x), singsol=all);
ode=y[x]*D[y[x],{x,2}] == g[x]*y[x]^2 + f[x]*y[x]*D[y[x],x] + D[y[x],x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-f(x)*y(x)*Derivative(y(x), x) - g(x)*y(x)**2 + y(x)*Derivative(y(x), (x, 2)) - Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -sqrt((f(x)**2*y(x) - 4*g(x)*y(x) + 4*Derivative(y(x), (x, 2)))*