Internal
problem
ID
[6451]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
149
Date
solved
:
Tuesday, September 30, 2025 at 02:57:11 PM
CAS
classification
:
[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=y(x)*diff(diff(y(x),x),x) = -y(x)*(diff(f(x),x)-y(x)^2*diff(g(x),x))+(f(x)+g(x)*y(x)^2)*diff(y(x),x)+diff(y(x),x)^2; dsolve(ode,y(x), singsol=all);
ode=y[x]*D[y[x],{x,2}] == -(y[x]*(D[f[x],x] - y[x]^2*D[g[x],x])) + (f[x] + g[x]*y[x]^2)*D[y[x],x] + D[y[x],x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-y(x)**2*Derivative(g(x), x) + Derivative(f(x), x))*y(x) - (f(x) + g(x)*y(x)**2)*Derivative(y(x), x) + y(x)*Derivative(y(x), (x, 2)) - Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -sqrt(f(x)**2 + 2*f(x)*g(x)*y(x)**2 + g(x)**2*y(x)**4 - 4*y(x)**