Internal
problem
ID
[6500]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
198
Date
solved
:
Tuesday, September 30, 2025 at 03:02:22 PM
CAS
classification
:
[NONE]
ode:=a*(2+a)^2*y(x)*diff(diff(y(x),x),x) = -a^2*f(x)^2*y(x)^4+a^2*(2+a)*y(x)^3*diff(f(x),x)+a*(2+a)^2*f(x)*y(x)^2*diff(y(x),x)+(a-1)*(2+a)^2*diff(y(x),x)^2; dsolve(ode,y(x), singsol=all);
ode=a*(2 + a)^2*y[x]*D[y[x],{x,2}] == -(a^2*f[x]^2*y[x]^4) + a^2*(2 + a)*y[x]^3*D[f[x],x] + a*(2 + a)^2*f[x]*y[x]^2*D[y[x],x] + (-1 + a)*(2 + a)^2*D[y[x],x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-a**2*(a + 2)*y(x)**3*Derivative(f(x), x) + a**2*f(x)**2*y(x)**4 - a*(a + 2)**2*f(x)*y(x)**2*Derivative(y(x), x) + a*(a + 2)**2*y(x)*Derivative(y(x), (x, 2)) - (a - 1)*(a + 2)**2*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-a**2*f(x)*y(x)**2/2 - a*f(x)*y(x)**2 + s