23.4.199 problem 199

Internal problem ID [6501]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 199
Date solved : Tuesday, September 30, 2025 at 03:02:23 PM
CAS classification : [[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.009 (sec). Leaf size: 35
ode:=y(x)*diff(y(x),x)+x*diff(y(x),x)^2+x*y(x)*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= \sqrt {2 c_1 \ln \left (x \right )+2 c_2} \\ y &= -\sqrt {2 c_1 \ln \left (x \right )+2 c_2} \\ \end{align*}
Mathematica. Time used: 0.174 (sec). Leaf size: 19
ode=y[x]*D[y[x],x] + x*D[y[x],x]^2 + x*y[x]*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_2 \sqrt {2 \log (x)+c_1} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x)*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x)**2 + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt((-4*x**2*Derivative(y(x), (x, 2)) +