Internal
problem
ID
[6558]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
256
Date
solved
:
Friday, October 03, 2025 at 02:09:30 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=x^2*y(x)^2*diff(diff(y(x),x),x) = (x^2+y(x)^2)*(-y(x)+x*diff(y(x),x)); dsolve(ode,y(x), singsol=all);
ode=x^2*y[x]^2*D[y[x],{x,2}] == (x^2 + y[x]^2)*(-y[x] + x*D[y[x],x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*y(x)**2*Derivative(y(x), (x, 2)) - (x**2 + y(x)**2)*(x*Derivative(y(x), x) - y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*y(x)*Derivative(y(x), (x, 2)) + x**2