Internal
problem
ID
[6559]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
257
Date
solved
:
Friday, October 03, 2025 at 02:09:31 AM
CAS
classification
:
[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=(a^2-x^2)*y(x)*diff(y(x),x)^2+(a^2-x^2)*(a^2-y(x)^2)*diff(diff(y(x),x),x) = x*(a^2-y(x)^2)*diff(y(x),x); dsolve(ode,y(x), singsol=all);
ode=(a^2 - x^2)*y[x]*D[y[x],x]^2 + (a^2 - x^2)*(a^2 - y[x]^2)*D[y[x],{x,2}] == x*(a^2 - y[x]^2)*D[y[x],x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-x*(a**2 - y(x)**2)*Derivative(y(x), x) + (a**2 - x**2)*(a**2 - y(x)**2)*Derivative(y(x), (x, 2)) + (a**2 - x**2)*y(x)*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x*(a - y(x))*(a + y(x))*(a**2 - x**2) + s