Internal
problem
ID
[6577]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
275
Date
solved
:
Tuesday, September 30, 2025 at 03:07:56 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
ode:=a2*(a3+a1*sin(y(x))^2)*y(x)+a1*diff(y(x),x)^2+a1*cos(y(x))*sin(y(x))*diff(y(x),x)^2+(a0+a1*sin(y(x))^2)*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=a2*(a3 + a1*Sin[y[x]]^2)*y[x] + a1*D[y[x],x]^2 + a1*Cos[y[x]]*Sin[y[x]]*D[y[x],x]^2 + (a0 + a1*Sin[y[x]]^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") a0 = symbols("a0") a1 = symbols("a1") a2 = symbols("a2") a3 = symbols("a3") y = Function("y") ode = Eq(a1*sin(y(x))*cos(y(x))*Derivative(y(x), x)**2 + a1*Derivative(y(x), x)**2 + a2*(a1*sin(y(x))**2 + a3)*y(x) + (a0 + a1*sin(y(x))**2)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -sqrt(-(a0*Derivative(y(x), (x, 2)) + a1*a2*y(x)*sin(y(x))**2 +