Internal
problem
ID
[6578]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
276
Date
solved
:
Tuesday, September 30, 2025 at 03:10:58 PM
CAS
classification
:
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=(1+ln(y(x)))*diff(y(x),x)^2+(1-ln(y(x)))*y(x)*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1 + log[y[x]])*D[y[x],x]^2 + (1 - Log[y[x]])*y[x]*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((1 - log(y(x)))*y(x)*Derivative(y(x), (x, 2)) + (log(y(x)) + 1)*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -sqrt((log(y(x)) - 1)*y(x)*Derivative(y(x), (x, 2))/(log(y(x)) +