23.4.282 problem 285

Internal problem ID [6584]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 285
Date solved : Tuesday, September 30, 2025 at 03:13:57 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} 3 y y^{\prime } y^{\prime \prime }&=-1+{y^{\prime }}^{3} \end{align*}
Maple. Time used: 0.017 (sec). Leaf size: 112
ode:=3*y(x)*diff(y(x),x)*diff(diff(y(x),x),x) = -1+diff(y(x),x)^3; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \frac {3 \left (c_1 y+1\right )^{{2}/{3}}+\left (-2 x -2 c_2 \right ) c_1}{2 c_1} &= 0 \\ \frac {3 i \left (c_1 y+1\right )^{{2}/{3}}-\left (x +c_2 \right ) c_1 \sqrt {3}+i \left (x +c_2 \right ) c_1}{c_1 \left (-i+\sqrt {3}\right )} &= 0 \\ \frac {-3 i \left (c_1 y+1\right )^{{2}/{3}}-\left (x +c_2 \right ) c_1 \sqrt {3}-i \left (x +c_2 \right ) c_1}{c_1 \left (\sqrt {3}+i\right )} &= 0 \\ \end{align*}
Mathematica. Time used: 38.663 (sec). Leaf size: 126
ode=3*y[x]*D[y[x],x]*D[y[x],{x,2}] == -1 + D[y[x],x]^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{9} e^{-3 c_1} \left (-9+2 \sqrt {6} \left (e^{3 c_1} (x+c_2)\right ){}^{3/2}\right )\\ y(x)&\to \frac {1}{9} e^{-3 c_1} \left (-9+2 \sqrt {6} \left (-\sqrt [3]{-1} e^{3 c_1} (x+c_2)\right ){}^{3/2}\right )\\ y(x)&\to \frac {1}{9} e^{-3 c_1} \left (-9+2 \sqrt {6} \left ((-1)^{2/3} e^{3 c_1} (x+c_2)\right ){}^{3/2}\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*y(x)*Derivative(y(x), x)*Derivative(y(x), (x, 2)) - Derivative(y(x), x)**3 + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -(sqrt(-y(x)**3*Derivative(y(x), (x, 2))**3 + 1/4) + 1/2)**(1/3)