Internal
problem
ID
[6585]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
286
Date
solved
:
Tuesday, September 30, 2025 at 03:13:59 PM
CAS
classification
:
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]]
ode:=y(x)+3*x*diff(y(x),x)+2*y(x)*diff(y(x),x)^3+(x^2+2*y(x)^2*diff(y(x),x))*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=y[x] + 3*x*D[y[x],x] + 2*y[x]*D[y[x],x]^3 + (x^2 + 2*y[x]^2*D[y[x],x])*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x*Derivative(y(x), x) + (x**2 + 2*y(x)**2*Derivative(y(x), x))*Derivative(y(x), (x, 2)) + 2*y(x)*Derivative(y(x), x)**3 + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(3*x + 2*y(x)**2*Derivative(y(x), (x, 2)))/(2*(-1/2 + sqrt(3)*I