Internal
problem
ID
[6598]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
299
Date
solved
:
Friday, October 03, 2025 at 02:09:34 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=4*diff(y(x),x)^2-2*(y(x)+3*x*diff(y(x),x))*diff(diff(y(x),x),x)+3*x^2*diff(diff(y(x),x),x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=4*D[y[x],x]^2 - 2*(y[x] + 3*x*D[y[x],x])*D[y[x],{x,2}] + 3*x^2*D[y[x],{x,2}]^2 == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x**2*Derivative(y(x), (x, 2))**2 - (6*x*Derivative(y(x), x) + 2*y(x))*Derivative(y(x), (x, 2)) + 4*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -3*x*Derivative(y(x), (x, 2))/4 - sqrt((-3*x**2*Derivative(y(x),