Internal
problem
ID
[6599]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
300
Date
solved
:
Friday, October 03, 2025 at 02:09:35 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=6*y(x)*diff(diff(y(x),x),x)-6*(1-6*x)*x*diff(y(x),x)*diff(diff(y(x),x),x)+(2-9*x)*x^2*diff(diff(y(x),x),x)^2 = 36*x*diff(y(x),x)^2; dsolve(ode,y(x), singsol=all);
ode=6*y[x]*D[y[x],{x,2}] - 6*(1 - 6*x)*x*D[y[x],x]*D[y[x],{x,2}] + (2 - 9*x)*x^2*D[y[x],{x,2}]^2 == 36*x*D[y[x],x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(2 - 9*x)*Derivative(y(x), (x, 2))**2 - x*(6 - 36*x)*Derivative(y(x), x)*Derivative(y(x), (x, 2)) - 36*x*Derivative(y(x), x)**2 + 6*y(x)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x*(6*x - 1)*Derivative(y(x), (x, 2)) + sq