23.5.6 problem 6

Internal problem ID [6615]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 5. THE EQUATION IS LINEAR AND OF ORDER GREATER THAN TWO, page 410
Problem number : 6
Date solved : Tuesday, September 30, 2025 at 03:50:15 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime \prime }&=x^{2}+y \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 40
ode:=diff(diff(diff(y(x),x),x),x) = y(x)+x^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -x^{2}+c_1 \,{\mathrm e}^{x}+c_2 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right )+c_3 \,{\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 59
ode=D[y[x],{x,3}] == x^2 + y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -x^2+c_1 e^x+c_2 e^{-x/2} \cos \left (\frac {\sqrt {3} x}{2}\right )+c_3 e^{-x/2} \sin \left (\frac {\sqrt {3} x}{2}\right ) \end{align*}
Sympy. Time used: 0.074 (sec). Leaf size: 39
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 - y(x) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{x} - x^{2} + \left (C_{1} \sin {\left (\frac {\sqrt {3} x}{2} \right )} + C_{2} \cos {\left (\frac {\sqrt {3} x}{2} \right )}\right ) e^{- \frac {x}{2}} \]