23.5.160 problem 160

Internal problem ID [6769]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 5. THE EQUATION IS LINEAR AND OF ORDER GREATER THAN TWO, page 410
Problem number : 160
Date solved : Friday, October 03, 2025 at 02:09:51 AM
CAS classification : [[_high_order, _with_linear_symmetries]]

\begin{align*} a^{4} x^{4} y+4 a^{3} x^{3} y^{\prime }+6 a^{2} x^{2} y^{\prime \prime }+4 a x y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&=0 \end{align*}
Maple. Time used: 0.008 (sec). Leaf size: 79
ode:=a^4*x^4*y(x)+4*a^3*x^3*diff(y(x),x)+6*a^2*x^2*diff(diff(y(x),x),x)+4*a*x*diff(diff(diff(y(x),x),x),x)+diff(diff(diff(diff(y(x),x),x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {a \,x^{2}}{2}} \left (c_1 \,{\mathrm e}^{-\sqrt {3-\sqrt {6}}\, \sqrt {a}\, x}+c_2 \,{\mathrm e}^{\sqrt {3-\sqrt {6}}\, \sqrt {a}\, x}+c_3 \,{\mathrm e}^{-\sqrt {3+\sqrt {6}}\, \sqrt {a}\, x}+c_4 \,{\mathrm e}^{\sqrt {3+\sqrt {6}}\, \sqrt {a}\, x}\right ) \]
Mathematica. Time used: 0.321 (sec). Leaf size: 163
ode=a^4*x^4*y[x] + 4*a^3*x^3*D[y[x],x] + 6*a^2*x^2*D[y[x],{x,2}] + 4*a*x*D[y[x],{x,3}] + D[y[x],{x,4}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^{-\frac {1}{2} a x \left (\frac {2}{\sqrt {a-\sqrt {\frac {2}{3}} a}}+x\right )} \left (6 a \left (c_1 e^{\frac {\left (-3+\sqrt {3}+\sqrt {6}\right ) a x}{\sqrt {-\left (\left (\sqrt {6}-3\right ) a\right )}}}+c_2 e^{\frac {\left (3+\sqrt {3}-\sqrt {6}\right ) a x}{\sqrt {-\left (\left (\sqrt {6}-3\right ) a\right )}}}\right )+\sqrt {6} \sqrt {-\left (\left (\sqrt {6}-3\right ) a\right )} \left (c_4 e^{\frac {2 a x}{\sqrt {a-\sqrt {\frac {2}{3}} a}}}+c_3\right )\right )}{6 a} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a**4*x**4*y(x) + 4*a**3*x**3*Derivative(y(x), x) + 6*a**2*x**2*Derivative(y(x), (x, 2)) + 4*a*x*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE a*x*y(x)/4 + Derivative(y(x), x) + 3*Derivative(y(x), (x, 2))/(2