Internal
problem
ID
[6769]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
5.
THE
EQUATION
IS
LINEAR
AND
OF
ORDER
GREATER
THAN
TWO,
page
410
Problem
number
:
160
Date
solved
:
Friday, October 03, 2025 at 02:09:51 AM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=a^4*x^4*y(x)+4*a^3*x^3*diff(y(x),x)+6*a^2*x^2*diff(diff(y(x),x),x)+4*a*x*diff(diff(diff(y(x),x),x),x)+diff(diff(diff(diff(y(x),x),x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=a^4*x^4*y[x] + 4*a^3*x^3*D[y[x],x] + 6*a^2*x^2*D[y[x],{x,2}] + 4*a*x*D[y[x],{x,3}] + D[y[x],{x,4}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(a**4*x**4*y(x) + 4*a**3*x**3*Derivative(y(x), x) + 6*a**2*x**2*Derivative(y(x), (x, 2)) + 4*a*x*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE a*x*y(x)/4 + Derivative(y(x), x) + 3*Derivative(y(x), (x, 2))/(2