Internal
problem
ID
[6770]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
5.
THE
EQUATION
IS
LINEAR
AND
OF
ORDER
GREATER
THAN
TWO,
page
410
Problem
number
:
161
Date
solved
:
Tuesday, September 30, 2025 at 03:51:31 PM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=2*a^2*b^2*y(x)+2*(a^2+b^2)*diff(diff(y(x),x),x)+2*diff(diff(diff(diff(y(x),x),x),x),x) = cos(a*x)+cos(b*x); dsolve(ode,y(x), singsol=all);
ode=2*(a^2*b^2*y[x] + (a^2 + b^2)*D[y[x],{x,2}] + D[y[x],{x,4}]) == Cos[a*x] + Cos[b*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(2*a**2*b**2*y(x) + (2*a**2 + 2*b**2)*Derivative(y(x), (x, 2)) - cos(a*x) - cos(b*x) + 2*Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)