23.5.174 problem 174

Internal problem ID [6783]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 5. THE EQUATION IS LINEAR AND OF ORDER GREATER THAN TWO, page 410
Problem number : 174
Date solved : Tuesday, September 30, 2025 at 03:51:39 PM
CAS classification : [[_high_order, _missing_y]]

\begin{align*} 6 x y^{\prime \prime }+6 x^{2} y^{\prime \prime \prime }+x^{3} y^{\prime \prime \prime \prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 18
ode:=6*x*diff(diff(y(x),x),x)+6*x^2*diff(diff(diff(y(x),x),x),x)+x^3*diff(diff(diff(diff(y(x),x),x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \ln \left (x \right )+\frac {c_3}{x}+c_4 x \]
Mathematica. Time used: 0.012 (sec). Leaf size: 27
ode=6*x*D[y[x],{x,2}] + 6*x^2*D[y[x],{x,3}] + x^3*D[y[x],{x,4}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1}{2 x}+c_4 x-c_2 \log (x)+c_3 \end{align*}
Sympy. Time used: 0.074 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), (x, 4)) + 6*x**2*Derivative(y(x), (x, 3)) + 6*x*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {C_{2}}{x} + C_{3} x + C_{4} \log {\left (x \right )} \]