Internal
problem
ID
[6784]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
5.
THE
EQUATION
IS
LINEAR
AND
OF
ORDER
GREATER
THAN
TWO,
page
410
Problem
number
:
175
Date
solved
:
Friday, October 03, 2025 at 02:09:52 AM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=-k*y(x)-(-a*b*c+x)*diff(y(x),x)+(a*b+a*c+b*c+a+b+c+1)*x*diff(diff(y(x),x),x)+(3+a+b+c)*x^2*diff(diff(diff(y(x),x),x),x)+x^3*diff(diff(diff(diff(y(x),x),x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=-(k*y[x]) - (-(a*b*c) + x)*D[y[x],x] + (1 + a + b + a*b + c + a*c + b*c)*x*D[y[x],{x,2}] + (3 + a + b + c)*x^2*D[y[x],{x,3}] + x^3*D[y[x],{x,4}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") k = symbols("k") y = Function("y") ode = Eq(-k*y(x) + x**3*Derivative(y(x), (x, 4)) + x**2*(a + b + c + 3)*Derivative(y(x), (x, 3)) + x*(a*b + a*c + a + b*c + b + c + 1)*Derivative(y(x), (x, 2)) - (-a*b*c + x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-a*b*x*Derivative(y(x), (x, 2)) - a*c*x*D