26.4.16 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.8, page 90
Internal
problem
ID
[6962]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
10
Problem
number
:
Recognizable
Exact
Differential
equations.
Integrating
factors.
Exercise
10.8,
page
90
Date
solved
:
Tuesday, September 30, 2025 at 04:07:20 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
\begin{align*} y \left (2 x +y^{3}\right )-x \left (2 x -y^{3}\right ) y^{\prime }&=0 \end{align*}
✓ Maple. Time used: 0.034 (sec). Leaf size: 326
ode:=y(x)*(2*x+y(x)^3)-x*(2*x-y(x)^3)*diff(y(x),x) = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= \frac {\frac {\left (-108 x^{4}+8 c_1^{3}+12 \sqrt {81 x^{4}-12 c_1^{3}}\, x^{2}\right )^{{1}/{3}}}{2}+\frac {2 c_1^{2}}{\left (-108 x^{4}+8 c_1^{3}+12 \sqrt {81 x^{4}-12 c_1^{3}}\, x^{2}\right )^{{1}/{3}}}+c_1}{3 x} \\
y &= \frac {\left (-i \sqrt {3}-1\right ) \left (-108 x^{4}+8 c_1^{3}+12 \sqrt {81 x^{4}-12 c_1^{3}}\, x^{2}\right )^{{2}/{3}}+4 c_1 \left (i c_1 \sqrt {3}-c_1 +\left (-108 x^{4}+8 c_1^{3}+12 \sqrt {81 x^{4}-12 c_1^{3}}\, x^{2}\right )^{{1}/{3}}\right )}{12 \left (-108 x^{4}+8 c_1^{3}+12 \sqrt {81 x^{4}-12 c_1^{3}}\, x^{2}\right )^{{1}/{3}} x} \\
y &= \frac {\left (i \sqrt {3}-1\right ) \left (-108 x^{4}+8 c_1^{3}+12 \sqrt {81 x^{4}-12 c_1^{3}}\, x^{2}\right )^{{2}/{3}}+4 \left (-i c_1 \sqrt {3}-c_1 +\left (-108 x^{4}+8 c_1^{3}+12 \sqrt {81 x^{4}-12 c_1^{3}}\, x^{2}\right )^{{1}/{3}}\right ) c_1}{12 \left (-108 x^{4}+8 c_1^{3}+12 \sqrt {81 x^{4}-12 c_1^{3}}\, x^{2}\right )^{{1}/{3}} x} \\
\end{align*}
✓ Mathematica. Time used: 18.727 (sec). Leaf size: 371
ode=(y[x]*(2*x+y[x]^3))-(x*(2*x-y[x]^3))*D[y[x],x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to -\frac {\frac {2 \sqrt [3]{2} c_1{}^2}{\sqrt [3]{27 x^4+3 \sqrt {81 x^8+12 c_1{}^3 x^4}+2 c_1{}^3}}+2^{2/3} \sqrt [3]{27 x^4+3 \sqrt {81 x^8+12 c_1{}^3 x^4}+2 c_1{}^3}+2 c_1}{6 x}\\ y(x)&\to \frac {\frac {2 \sqrt [3]{2} \left (1+i \sqrt {3}\right ) c_1{}^2}{\sqrt [3]{27 x^4+3 \sqrt {81 x^8+12 c_1{}^3 x^4}+2 c_1{}^3}}+2^{2/3} \left (1-i \sqrt {3}\right ) \sqrt [3]{27 x^4+3 \sqrt {81 x^8+12 c_1{}^3 x^4}+2 c_1{}^3}-4 c_1}{12 x}\\ y(x)&\to \frac {\frac {2 \sqrt [3]{2} \left (1-i \sqrt {3}\right ) c_1{}^2}{\sqrt [3]{27 x^4+3 \sqrt {81 x^8+12 c_1{}^3 x^4}+2 c_1{}^3}}+2^{2/3} \left (1+i \sqrt {3}\right ) \sqrt [3]{27 x^4+3 \sqrt {81 x^8+12 c_1{}^3 x^4}+2 c_1{}^3}-4 c_1}{12 x}\\ y(x)&\to 0 \end{align*}
✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-x*(2*x - y(x)**3)*Derivative(y(x), x) + (2*x + y(x)**3)*y(x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
Timed Out