Internal
problem
ID
[6963]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
10
Problem
number
:
Recognizable
Exact
Differential
equations.
Integrating
factors.
Exercise
10.9,
page
90
Date
solved
:
Tuesday, September 30, 2025 at 04:07:20 PM
CAS
classification
:
[_exact]
ode:=arctan(x*y(x))+(x*y(x)-2*x*y(x)^2)/(1+x^2*y(x)^2)+(x^2-2*x^2*y(x))/(1+x^2*y(x)^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(ArcTan[x*y[x]]+(x*y[x]-2*x*y[x]^2)/(1+x^2*y[x]^2))+((x^2-2*x^2*y[x])/(1+x^2*y[x]^2))*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-2*x*y(x)**2 + x*y(x))/(x**2*y(x)**2 + 1) + (-2*x**2*y(x) + x**2)*Derivative(y(x), x)/(x**2*y(x)**2 + 1) + atan(x*y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out