Internal
problem
ID
[7126]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
4.
Higher
order
linear
differential
equations.
Lesson
22.
Variation
of
Parameters
Problem
number
:
Exercise
22,
problem
17,
page
240
Date
solved
:
Tuesday, September 30, 2025 at 04:21:46 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-2/x*diff(y(x),x)+2/x^2*y(x) = x*ln(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-2/x*D[y[x],x]+2/x^2*y[x]==x*Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*log(x) + Derivative(y(x), (x, 2)) - 2*Derivative(y(x), x)/x + 2*y(x)/x**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)