Internal
problem
ID
[7127]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
4.
Higher
order
linear
differential
equations.
Lesson
22.
Variation
of
Parameters
Problem
number
:
Exercise
22,
problem
18,
page
240
Date
solved
:
Tuesday, September 30, 2025 at 04:21:47 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-4*y(x) = x^3; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]-4*y[x]==x^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3 + x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - 4*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)