Internal
problem
ID
[7484]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Section
2.5,
Special
Integrating
Factors.
Exercises.
page
69
Problem
number
:
1
Date
solved
:
Tuesday, September 30, 2025 at 04:39:18 PM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class B`]]
ode:=2*x+y(x)/x+(x*y(x)-1)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( 2*x+y[x]/x )+( x*y[x]-1 )*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x + (x*y(x) - 1)*Derivative(y(x), x) + y(x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)