Internal
problem
ID
[7485]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Section
2.5,
Special
Integrating
Factors.
Exercises.
page
69
Problem
number
:
2
Date
solved
:
Tuesday, September 30, 2025 at 04:39:20 PM
CAS
classification
:
[_separable]
ode:=2*y(x)^3+2*y(x)^2+(3*x*y(x)^2+2*x*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( 2*y[x]^3+2*y[x]^2 )+( 3*y[x]^2*x+2*x*y[x] )*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((3*x*y(x)**2 + 2*x*y(x))*Derivative(y(x), x) + 2*y(x)**3 + 2*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out