Internal
problem
ID
[7523]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Section
2.6,
Substitutions
and
Transformations.
Exercises.
page
76
Problem
number
:
24
Date
solved
:
Tuesday, September 30, 2025 at 04:41:55 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]
ode:=diff(y(x),x)+y(x)/(x-2) = 5*(x-2)*y(x)^(1/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]+y[x]/(x-2)==5*(x-2)*Sqrt[ y[x] ]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(5*x - 10)*sqrt(y(x)) + Derivative(y(x), x) + y(x)/(x - 2),0) ics = {} dsolve(ode,func=y(x),ics=ics)