Internal
problem
ID
[7524]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Section
2.6,
Substitutions
and
Transformations.
Exercises.
page
76
Problem
number
:
25
Date
solved
:
Tuesday, September 30, 2025 at 04:41:58 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _Bernoulli]
ode:=diff(x(t),t)+t*x(t)^3+x(t)/t = 0; dsolve(ode,x(t), singsol=all);
ode=D[x[t],t]+t*x[t]^3+x[t]/t==0; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(t*x(t)**3 + Derivative(x(t), t) + x(t)/t,0) ics = {} dsolve(ode,func=x(t),ics=ics)