33.1.9 problem Problem 11.10

Internal problem ID [7801]
Book : Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014
Section : Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95
Problem number : Problem 11.10
Date solved : Tuesday, September 30, 2025 at 05:05:37 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-5 y&=2 \,{\mathrm e}^{5 x} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 28
ode:=diff(diff(y(x),x),x)-5*y(x) = 2*exp(5*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\sqrt {5}\, x} c_2 +{\mathrm e}^{-\sqrt {5}\, x} c_1 +\frac {{\mathrm e}^{5 x}}{10} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 40
ode=D[y[x],{x,2}]-5*y[x]==2*Exp[5*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^{5 x}}{10}+c_1 e^{\sqrt {5} x}+c_2 e^{-\sqrt {5} x} \end{align*}
Sympy. Time used: 0.056 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-5*y(x) - 2*exp(5*x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- \sqrt {5} x} + C_{2} e^{\sqrt {5} x} + \frac {e^{5 x}}{10} \]